pub fn gather_to_all<T: Equivalence, C: CommunicatorCollectives>(
arr: &[T],
comm: &C,
) -> Vec<T>
Expand description
Gather array to all processes
Examples found in repository?
examples/mpi_complete_tree_debug.rs (line 98)
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
pub fn main() {
// Initialise MPI
let universe = mpi::initialize().unwrap();
// Get the world communicator
let comm = universe.world();
// Initialise a seeded Rng.
let mut rng = ChaCha8Rng::seed_from_u64(comm.rank() as u64);
// Create `npoints` per rank.
let npoints = 10000;
// Generate random points.
let mut points = generate_random_points(npoints, &mut rng, &comm);
// Make sure that the points live on the unit sphere.
for point in points.iter_mut() {
let len = point.coords()[0] * point.coords()[0]
+ point.coords()[1] * point.coords()[1]
+ point.coords()[2] * point.coords()[2];
let len = len.sqrt();
point.coords_mut()[0] /= len;
point.coords_mut()[1] /= len;
point.coords_mut()[2] /= len;
}
let tree = Octree::new(&points, 15, 50, &comm);
// We now check that each node of the tree has all its neighbors available.
let leaf_tree = tree.leaf_keys();
let all_keys = tree.all_keys();
assert!(is_complete_linear_and_balanced(leaf_tree, &comm));
for &key in leaf_tree {
// We only check interior keys. Leaf keys may not have a neighbor
// on the same level.
let mut parent = key.parent();
while parent.level() > 0 {
// Check that the key itself is there.
assert!(all_keys.contains_key(&key));
// Check that all its neighbours are there.
for neighbor in parent.neighbours().iter().filter(|&key| key.is_valid()) {
assert!(all_keys.contains_key(neighbor));
}
parent = parent.parent();
// Check that the parent is there.
assert!(all_keys.contains_key(&parent));
}
}
// At the end check that the root of the tree is also contained.
assert!(all_keys.contains_key(&MortonKey::root()));
// Count the number of ghosts on each rank
// Count the number of global keys on each rank.
// Assert that all ghosts are from a different rank and count them.
let nghosts = all_keys
.iter()
.filter_map(|(_, &value)| {
if let KeyType::Ghost(rank) = value {
assert!(rank != comm.size() as usize);
Some(rank)
} else {
None
}
})
.count();
if comm.size() == 1 {
assert_eq!(nghosts, 0);
} else {
assert!(nghosts > 0);
}
let nglobal = all_keys
.iter()
.filter(|(_, &value)| matches!(value, KeyType::Global))
.count();
// Assert that all globals across all ranks have the same count.
let nglobals = gather_to_all(std::slice::from_ref(&nglobal), &comm);
assert_eq!(nglobals.iter().unique().count(), 1);
// Check that the points are associated with the correct leaf keys.
let mut npoints = 0;
let leaf_point_map = tree.leaf_keys_to_local_point_indices();
for (key, point_indices) in leaf_point_map {
for &index in point_indices {
assert!(key.is_ancestor(tree.point_keys()[index]));
}
npoints += point_indices.len();
}
// Make sure that the number of points and point keys lines up
// with the points stored for each leaf key.
assert_eq!(npoints, tree.points().len());
assert_eq!(npoints, tree.point_keys().len());
// Check the neighbour relationships.
let all_neighbours = tree.neighbour_map();
let all_keys = tree.all_keys();
for (key, key_type) in all_keys {
// Ghost keys should not be in the neighbour map.
match key_type {
KeyType::Ghost(_) => assert!(!all_neighbours.contains_key(key)),
_ => {
// If it is not a ghost the key should be in the neighbour map.
assert!(all_neighbours.contains_key(key));
}
}
}
if comm.rank() == 0 {
println!("No errors were found in setting up tree.");
}
}