Expand description
Ciarlet finite elements.
In the Ciarlet definition, a finite element is defined to be a triple $(\mathcal{R}, \mathcal{V}, \mathcal{L})$, where:
- $\mathcal{R}\subset\mathbb{R}^d$ is the reference cell,
- $\mathcal{V}$ is a finite dimensional function space on $\mathcal{R}$ of dimension $n$, usually polynomials,
- $\mathcal{L} = {\ell_0,\dots, \ell_{n-1}}$ is a basis of the dual space $\mathcal{V}^* = \set{f:\mathcal{V} -> \mathbb{R}: f\text{ is linear}}$, with
The basis functions $\phi_0,\dots, \phi_{n-1}$ of the finite element space are defined by $$\ell_i(\phi_j) = \begin{cases}1 &\text{if }~i = j \newline 0 &\text{otherwise}\end{cases}. $$
§Example
The order 1 Lagrange space on a triangle is defined by:
- $\mathcal{R}$ is a triangle with vertices $(0, 0)$, $(1, 0)$, $(0, 1)$.
- $\mathcal{V} = \text{span}\set{1, x, y}$.
- $\mathcal{L} = \set{\ell_0, \ell_0, \ell_1}$ with $\ell_j$ the pointwise evaluation at vertex $v_j$, and each functional associated with the relevant vertex.
This gives the basis functions $\phi_0(x, y) = 1 - x - y$, $\phi_1(x, y) = x$, $\phi_2(x, y) = y$.
§References
Re-exports§
pub use lagrange::LagrangeElementFamily;pub use nedelec::NedelecFirstKindElementFamily;pub use raviart_thomas::RaviartThomasElementFamily;
Modules§
- lagrange
- Lagrange elements.
- nedelec
- Nedelec elements.
- raviart_
thomas - Raviart-Thomas elements.
Structs§
- Ciarlet
Element - A Ciarlet element