use crate::helpers::{
check_dimensions_assemble, check_dimensions_assemble_diagonal, check_dimensions_evaluate,
};
use crate::traits::Kernel;
use crate::types::GreenKernelEvalType;
use num::traits::FloatConst;
use rayon::prelude::*;
use rlst::{RlstScalar, RlstSimd, SimdFor};
#[derive(Clone, Copy)]
pub struct ModifiedHelmholtz3dKernel<T: RlstScalar<Real = T>> {
omega: T,
}
impl<T: RlstScalar<Real = T>> ModifiedHelmholtz3dKernel<T> {
pub fn new(omega: T) -> Self {
Self { omega }
}
}
impl<T: RlstScalar<Real = T> + Send + Sync> Kernel for ModifiedHelmholtz3dKernel<T> {
type T = T;
fn domain_component_count(&self) -> usize {
1
}
fn space_dimension(&self) -> usize {
3
}
fn evaluate_st(
&self,
eval_type: GreenKernelEvalType,
sources: &[<Self::T as RlstScalar>::Real],
targets: &[<Self::T as RlstScalar>::Real],
charges: &[Self::T],
result: &mut [Self::T],
) {
check_dimensions_evaluate(self, eval_type, sources, targets, charges, result);
let range_dim = self.range_component_count(eval_type);
result
.chunks_exact_mut(range_dim)
.enumerate()
.for_each(|(target_index, my_chunk)| {
let target = [
targets[3 * target_index],
targets[3 * target_index + 1],
targets[3 * target_index + 2],
];
evaluate_modified_helmholtz_one_target(
eval_type, &target, sources, charges, self.omega, my_chunk,
)
});
}
fn evaluate_mt(
&self,
eval_type: GreenKernelEvalType,
sources: &[<Self::T as RlstScalar>::Real],
targets: &[<Self::T as RlstScalar>::Real],
charges: &[Self::T],
result: &mut [Self::T],
) {
check_dimensions_evaluate(self, eval_type, sources, targets, charges, result);
let range_dim = self.range_component_count(eval_type);
result
.par_chunks_exact_mut(range_dim)
.enumerate()
.for_each(|(target_index, my_chunk)| {
let target = [
targets[3 * target_index],
targets[3 * target_index + 1],
targets[3 * target_index + 2],
];
evaluate_modified_helmholtz_one_target(
eval_type, &target, sources, charges, self.omega, my_chunk,
)
});
}
fn assemble_st(
&self,
eval_type: GreenKernelEvalType,
sources: &[<Self::T as RlstScalar>::Real],
targets: &[<Self::T as RlstScalar>::Real],
result: &mut [Self::T],
) {
check_dimensions_assemble(self, eval_type, sources, targets, result);
let nsources = sources.len() / self.space_dimension();
let range_dim = self.range_component_count(eval_type);
result
.chunks_exact_mut(range_dim * nsources)
.enumerate()
.for_each(|(target_index, my_chunk)| {
let target = [
targets[3 * target_index],
targets[3 * target_index + 1],
targets[3 * target_index + 2],
];
assemble_modified_helmholtz_one_target(
eval_type, &target, sources, self.omega, my_chunk,
)
});
}
fn assemble_mt(
&self,
eval_type: GreenKernelEvalType,
sources: &[<Self::T as RlstScalar>::Real],
targets: &[<Self::T as RlstScalar>::Real],
result: &mut [Self::T],
) {
check_dimensions_assemble(self, eval_type, sources, targets, result);
let nsources = sources.len() / self.space_dimension();
let range_dim = self.range_component_count(eval_type);
result
.par_chunks_exact_mut(range_dim * nsources)
.enumerate()
.for_each(|(target_index, my_chunk)| {
let target = [
targets[3 * target_index],
targets[3 * target_index + 1],
targets[3 * target_index + 2],
];
assemble_modified_helmholtz_one_target(
eval_type, &target, sources, self.omega, my_chunk,
)
});
}
fn assemble_pairwise_st(
&self,
eval_type: GreenKernelEvalType,
sources: &[<Self::T as RlstScalar>::Real],
targets: &[<Self::T as RlstScalar>::Real],
result: &mut [Self::T],
) {
check_dimensions_assemble_diagonal(self, eval_type, sources, targets, result);
let m_inv_4pi = num::cast::<f64, T::Real>(0.25 * f64::FRAC_1_PI()).unwrap();
match eval_type {
GreenKernelEvalType::Value => {
struct Impl<'a, T: RlstScalar<Real = T> + RlstSimd> {
m_inv_4pi: T,
omega: T,
sources: &'a [T],
targets: &'a [T],
result: &'a mut [T],
}
impl<T: RlstScalar<Real = T> + RlstSimd> pulp::WithSimd for Impl<'_, T> {
type Output = ();
#[inline(always)]
fn with_simd<S: pulp::Simd>(self, simd: S) -> Self::Output {
use coe::Coerce;
let Self {
m_inv_4pi,
omega,
sources,
targets,
result,
} = self;
let (sources, _) = pulp::as_arrays::<3, T>(sources);
let (targets, _) = pulp::as_arrays::<3, T>(targets);
let (sources_head, sources_tail) = T::as_simd_slice_from_vec(sources);
let (targets_head, targets_tail) = T::as_simd_slice_from_vec(targets);
let (result_head, result_tail) = T::as_simd_slice_mut(result);
fn impl_slice<T: RlstScalar<Real = T> + RlstSimd, S: pulp::Simd>(
simd: S,
m_inv_4pi: T,
omega: T,
sources: &[[T::Scalars<S>; 3]],
targets: &[[T::Scalars<S>; 3]],
result: &mut [T::Scalars<S>],
) {
let simd = SimdFor::<T, S>::new(simd);
let m_inv_4pi = simd.splat(m_inv_4pi);
let zero = simd.splat(T::zero());
for (&s, &t, r) in itertools::izip!(sources, targets, result) {
let [s0, s1, s2] = simd.deinterleave(s);
let [t0, t1, t2] = simd.deinterleave(t);
let diff0 = simd.sub(s0, t0);
let diff1 = simd.sub(s1, t1);
let diff2 = simd.sub(s2, t2);
let square_sum = simd.mul_add(
diff0,
diff0,
simd.mul_add(diff1, diff1, simd.mul(diff2, diff2)),
);
let is_zero = simd.cmp_eq(square_sum, zero);
let inv_diff_norm =
simd.select(is_zero, zero, simd.approx_recip_sqrt(square_sum));
let diff_norm = simd.mul(inv_diff_norm, square_sum);
let romega = simd.mul(simd.splat(omega), diff_norm);
*r = simd.mul(
simd.exp(simd.neg(romega)),
simd.mul(inv_diff_norm, m_inv_4pi),
);
}
}
impl_slice::<T, S>(
simd,
m_inv_4pi,
omega,
sources_head,
targets_head,
result_head,
);
impl_slice::<T, pulp::Scalar>(
pulp::Scalar::new(),
m_inv_4pi,
omega,
sources_tail.coerce(),
targets_tail.coerce(),
result_tail.coerce(),
);
}
}
use coe::coerce_static as to;
use coe::Coerce;
if coe::is_same::<T, f32>() {
pulp::Arch::new().dispatch(Impl::<'_, f32> {
m_inv_4pi: to(m_inv_4pi),
omega: coe::coerce_static(self.omega),
sources: sources.coerce(),
targets: targets.coerce(),
result: result.coerce(),
});
} else if coe::is_same::<T, f64>() {
pulp::Arch::new().dispatch(Impl::<'_, f64> {
m_inv_4pi: to(m_inv_4pi),
omega: coe::coerce_static(self.omega),
sources: sources.coerce(),
targets: targets.coerce(),
result: result.coerce(),
});
} else {
panic!()
}
}
GreenKernelEvalType::ValueDeriv => {
struct Impl<'a, T: RlstScalar<Real = T> + RlstSimd> {
m_inv_4pi: T,
omega: T,
sources: &'a [T],
targets: &'a [T],
result: &'a mut [T],
}
impl<T: RlstScalar<Real = T> + RlstSimd> pulp::WithSimd for Impl<'_, T> {
type Output = ();
#[inline(always)]
fn with_simd<S: pulp::Simd>(self, simd: S) -> Self::Output {
use coe::Coerce;
let Self {
m_inv_4pi,
omega,
sources,
targets,
result,
} = self;
let (sources, _) = pulp::as_arrays::<3, T>(sources);
let (sources_head, sources_tail) = T::as_simd_slice_from_vec(sources);
let (targets, _) = pulp::as_arrays::<3, T>(targets);
let (targets_head, targets_tail) = T::as_simd_slice_from_vec(targets);
let (result, _) = pulp::as_arrays_mut::<4, T>(result);
let (result_head, result_tail) =
T::as_simd_slice_from_vec_mut::<_, 4>(result);
fn impl_slice<T: RlstScalar<Real = T> + RlstSimd, S: pulp::Simd>(
simd: S,
m_inv_4pi: T,
omega: T,
sources: &[[T::Scalars<S>; 3]],
targets: &[[T::Scalars<S>; 3]],
result: &mut [[T::Scalars<S>; 4]],
) {
let simd = SimdFor::<T, S>::new(simd);
let m_inv_4pi = simd.splat(m_inv_4pi);
let zero = simd.splat(T::zero());
for (&s, &t, r) in itertools::izip!(sources, targets, result) {
let [s0, s1, s2] = simd.deinterleave(s);
let [t0, t1, t2] = simd.deinterleave(t);
let diff0 = simd.sub(s0, t0);
let diff1 = simd.sub(s1, t1);
let diff2 = simd.sub(s2, t2);
let square_sum = simd.mul_add(
diff0,
diff0,
simd.mul_add(diff1, diff1, simd.mul(diff2, diff2)),
);
let is_zero = simd.cmp_eq(square_sum, zero);
let inv_diff_norm =
simd.select(is_zero, zero, simd.approx_recip_sqrt(square_sum));
let diff_norm = simd.mul(inv_diff_norm, square_sum);
let romega = simd.mul(simd.splat(omega), diff_norm);
let green = simd.mul(
simd.exp(simd.neg(romega)),
simd.mul(inv_diff_norm, m_inv_4pi),
);
let deriv_first_factor = simd.mul(
simd.mul(green, simd.add(simd.splat(T::one()), romega)),
simd.mul(inv_diff_norm, inv_diff_norm),
);
r[0] = green;
r[1] = simd.mul(diff0, deriv_first_factor);
r[2] = simd.mul(diff1, deriv_first_factor);
r[3] = simd.mul(diff2, deriv_first_factor);
*r = simd.interleave(*r);
}
}
impl_slice::<T, S>(
simd,
m_inv_4pi,
omega,
sources_head,
targets_head,
result_head,
);
impl_slice::<T, pulp::Scalar>(
pulp::Scalar::new(),
m_inv_4pi,
omega,
sources_tail.coerce(),
targets_tail.coerce(),
result_tail.coerce(),
);
}
}
use coe::coerce_static as to;
use coe::Coerce;
if coe::is_same::<T, f32>() {
pulp::Arch::new().dispatch(Impl::<'_, f32> {
m_inv_4pi: to(m_inv_4pi),
omega: to(self.omega),
sources: sources.coerce(),
targets: targets.coerce(),
result: result.coerce(),
});
} else if coe::is_same::<T, f64>() {
pulp::Arch::new().dispatch(Impl::<'_, f64> {
m_inv_4pi: to(m_inv_4pi),
omega: to(self.omega),
sources: sources.coerce(),
targets: targets.coerce(),
result: result.coerce(),
});
} else {
panic!()
}
}
}
}
fn range_component_count(&self, eval_type: GreenKernelEvalType) -> usize {
modified_helmholtz_component_count(eval_type)
}
#[inline(always)]
fn greens_fct(
&self,
eval_type: GreenKernelEvalType,
source: &[<Self::T as RlstScalar>::Real],
target: &[<Self::T as RlstScalar>::Real],
result: &mut [Self::T],
) {
assert_eq!(source.len(), 3);
assert_eq!(target.len(), 3);
if coe::is_same::<<Self::T as RlstScalar>::Real, f32>() {
coe::assert_same::<<Self::T as RlstScalar>::Real, f32>();
let omega: f32 = coe::coerce_static(self.omega);
let m_inv_4pi: f32 = 0.25 * f32::FRAC_1_PI();
let source: &[f32] = coe::coerce(source);
let target: &[f32] = coe::coerce(target);
let source: &[f32; 3] = source.try_into().unwrap();
let target: &[f32; 3] = target.try_into().unwrap();
let diff0 = source[0] - target[0];
let diff1 = source[1] - target[1];
let diff2 = source[2] - target[2];
let diff_norm =
f32::mul_add(diff0, diff0, f32::mul_add(diff1, diff1, diff2 * diff2)).sqrt();
let romega: f32 = omega * diff_norm;
let inv_diff_norm = {
if diff_norm == 0.0 {
0.0
} else {
f32::recip(diff_norm)
}
};
match eval_type {
GreenKernelEvalType::Value => {
result[0] = coe::coerce_static(inv_diff_norm * m_inv_4pi * (-romega).exp());
}
GreenKernelEvalType::ValueDeriv => {
let inv_diff_norm_omega = inv_diff_norm * (-romega).exp() * m_inv_4pi;
let inv_diff_norm_cube_omega =
inv_diff_norm * inv_diff_norm * inv_diff_norm_omega;
result[0] = coe::coerce_static(inv_diff_norm_omega);
result[1] =
coe::coerce_static(inv_diff_norm_cube_omega * (1.0 + romega) * diff0);
result[2] =
coe::coerce_static(inv_diff_norm_cube_omega * (1.0 + romega) * diff1);
result[3] =
coe::coerce_static(inv_diff_norm_cube_omega * (1.0 + romega) * diff2);
}
}
} else if coe::is_same::<Self::T, f64>() {
coe::assert_same::<<Self::T as RlstScalar>::Real, f64>();
let omega: f64 = coe::coerce_static(self.omega);
let m_inv_4pi: f64 = 0.25 * f64::FRAC_1_PI();
let source: &[f64] = coe::coerce(source);
let target: &[f64] = coe::coerce(target);
let source: &[f64; 3] = source.try_into().unwrap();
let target: &[f64; 3] = target.try_into().unwrap();
let diff0 = source[0] - target[0];
let diff1 = source[1] - target[1];
let diff2 = source[2] - target[2];
let diff_norm =
f64::mul_add(diff0, diff0, f64::mul_add(diff1, diff1, diff2 * diff2)).sqrt();
let romega: f64 = omega * diff_norm;
let inv_diff_norm = {
if diff_norm == 0.0 {
0.0
} else {
f64::recip(diff_norm)
}
};
match eval_type {
GreenKernelEvalType::Value => {
result[0] = coe::coerce_static(inv_diff_norm * m_inv_4pi * (-romega).exp());
}
GreenKernelEvalType::ValueDeriv => {
let inv_diff_norm_omega = inv_diff_norm * (-romega).exp() * m_inv_4pi;
let inv_diff_norm_cube_omega =
inv_diff_norm * inv_diff_norm * inv_diff_norm_omega;
result[0] = coe::coerce_static(inv_diff_norm_omega);
result[1] =
coe::coerce_static(inv_diff_norm_cube_omega * (1.0 + romega) * diff0);
result[2] =
coe::coerce_static(inv_diff_norm_cube_omega * (1.0 + romega) * diff1);
result[3] =
coe::coerce_static(inv_diff_norm_cube_omega * (1.0 + romega) * diff2);
}
}
} else {
panic!("Type not implemented.");
}
}
}
pub fn evaluate_modified_helmholtz_one_target<T: RlstScalar>(
eval_type: GreenKernelEvalType,
target: &[<T as RlstScalar>::Real],
sources: &[<T as RlstScalar>::Real],
charges: &[T],
omega: T,
result: &mut [T],
) {
let m_inv_4pi = num::cast::<f64, T::Real>(0.25 * f64::FRAC_1_PI()).unwrap();
match eval_type {
GreenKernelEvalType::Value => {
struct Impl<'a, T: RlstScalar<Real = T> + RlstSimd> {
omega: T,
t0: T,
t1: T,
t2: T,
sources: &'a [T],
charges: &'a [T],
}
impl<T: RlstScalar<Real = T> + RlstSimd> pulp::WithSimd for Impl<'_, T> {
type Output = T;
#[inline(always)]
fn with_simd<S: pulp::Simd>(self, simd: S) -> Self::Output {
use coe::Coerce;
let Self {
omega,
t0,
t1,
t2,
sources,
charges,
} = self;
let (sources, _) = pulp::as_arrays::<3, T>(sources);
let (sources_head, sources_tail) = T::as_simd_slice_from_vec(sources);
let (charges_head, charges_tail) = T::as_simd_slice(charges);
fn impl_slice<T: RlstScalar<Real = T> + RlstSimd, S: pulp::Simd>(
simd: S,
omega: T,
t0: T,
t1: T,
t2: T,
sources: &[[T::Scalars<S>; 3]],
charges: &[T::Scalars<S>],
) -> T {
let simd = SimdFor::<T, S>::new(simd);
let t0 = simd.splat(t0);
let t1 = simd.splat(t1);
let t2 = simd.splat(t2);
let zero = simd.splat(T::zero());
let mut acc = simd.splat(T::zero());
for (&s, &c) in itertools::izip!(sources, charges) {
let [s0, s1, s2] = simd.deinterleave(s);
let diff0 = simd.sub(s0, t0);
let diff1 = simd.sub(s1, t1);
let diff2 = simd.sub(s2, t2);
let square_sum = simd.mul_add(
diff0,
diff0,
simd.mul_add(diff1, diff1, simd.mul(diff2, diff2)),
);
let is_zero = simd.cmp_eq(square_sum, zero);
let inv_diff_norm =
simd.select(is_zero, zero, simd.approx_recip_sqrt(square_sum));
let diff_norm = simd.mul(inv_diff_norm, square_sum);
let romega = simd.mul(simd.splat(omega), diff_norm);
let green = simd.mul(simd.exp(simd.neg(romega)), inv_diff_norm);
acc = simd.mul_add(green, c, acc);
}
simd.reduce_add(acc)
}
let acc0 =
impl_slice::<T, S>(simd, omega, t0, t1, t2, sources_head, charges_head);
let acc1 = impl_slice::<T, pulp::Scalar>(
pulp::Scalar::new(),
omega,
t0,
t1,
t2,
sources_tail.coerce(),
charges_tail.coerce(),
);
acc0 + acc1
}
}
use coe::coerce_static as to;
use coe::Coerce;
if coe::is_same::<T, f32>() {
let acc = pulp::Arch::new().dispatch(Impl::<'_, f32> {
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
charges: charges.coerce(),
});
result[0] += T::from_real(to::<_, T::Real>(acc)).mul_real(m_inv_4pi);
} else if coe::is_same::<T, f64>() {
let acc = pulp::Arch::new().dispatch(Impl::<'_, f64> {
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
charges: charges.coerce(),
});
result[0] += T::from_real(to::<_, T::Real>(acc)).mul_real(m_inv_4pi);
} else {
panic!()
}
}
GreenKernelEvalType::ValueDeriv => {
struct Impl<'a, T: RlstScalar<Real = T> + RlstSimd> {
omega: T,
t0: T,
t1: T,
t2: T,
sources: &'a [T],
charges: &'a [T],
}
impl<T: RlstScalar<Real = T> + RlstSimd> pulp::WithSimd for Impl<'_, T> {
type Output = [T; 4];
#[inline(always)]
fn with_simd<S: pulp::Simd>(self, simd: S) -> Self::Output {
use coe::Coerce;
let Self {
omega,
t0,
t1,
t2,
sources,
charges,
} = self;
let (sources, _) = pulp::as_arrays::<3, T>(sources);
let (sources_head, sources_tail) = T::as_simd_slice_from_vec(sources);
let (charges_head, charges_tail) = T::as_simd_slice(charges);
fn impl_slice<T: RlstScalar<Real = T> + RlstSimd, S: pulp::Simd>(
simd: S,
omega: T,
t0: T,
t1: T,
t2: T,
sources: &[[T::Scalars<S>; 3]],
charges: &[T::Scalars<S>],
) -> [T; 4] {
let simd = SimdFor::<T, S>::new(simd);
let t0 = simd.splat(t0);
let t1 = simd.splat(t1);
let t2 = simd.splat(t2);
let zero = simd.splat(T::zero());
let mut acc0 = simd.splat(T::zero());
let mut acc1 = simd.splat(T::zero());
let mut acc2 = simd.splat(T::zero());
let mut acc3 = simd.splat(T::zero());
for (&s, &c) in itertools::izip!(sources, charges) {
let [s0, s1, s2] = simd.deinterleave(s);
let diff0 = simd.sub(s0, t0);
let diff1 = simd.sub(s1, t1);
let diff2 = simd.sub(s2, t2);
let square_sum = simd.mul_add(
diff0,
diff0,
simd.mul_add(diff1, diff1, simd.mul(diff2, diff2)),
);
let is_zero = simd.cmp_eq(square_sum, zero);
let inv_diff_norm =
simd.select(is_zero, zero, simd.approx_recip_sqrt(square_sum));
let diff_norm = simd.mul(inv_diff_norm, square_sum);
let romega = simd.mul(simd.splat(omega), diff_norm);
let green = simd.mul(simd.exp(simd.neg(romega)), inv_diff_norm);
let deriv_first_factor = simd.mul(
simd.mul(green, simd.add(simd.splat(T::one()), romega)),
simd.mul(inv_diff_norm, inv_diff_norm),
);
acc0 = simd.mul_add(green, c, acc0);
acc1 = simd.mul_add(diff0, simd.mul(c, deriv_first_factor), acc1);
acc2 = simd.mul_add(diff1, simd.mul(c, deriv_first_factor), acc2);
acc3 = simd.mul_add(diff2, simd.mul(c, deriv_first_factor), acc3);
}
[
simd.reduce_add(acc0),
simd.reduce_add(acc1),
simd.reduce_add(acc2),
simd.reduce_add(acc3),
]
}
let acc0 =
impl_slice::<T, S>(simd, omega, t0, t1, t2, sources_head, charges_head);
let acc1 = impl_slice::<T, pulp::Scalar>(
pulp::Scalar::new(),
omega,
t0,
t1,
t2,
sources_tail.coerce(),
charges_tail.coerce(),
);
[
acc0[0] + acc1[0],
acc0[1] + acc1[1],
acc0[2] + acc1[2],
acc0[3] + acc1[3],
]
}
}
use coe::coerce_static as to;
use coe::Coerce;
if coe::is_same::<T, f32>() {
let acc = pulp::Arch::new().dispatch(Impl::<'_, f32> {
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
charges: charges.coerce(),
});
result[0] += T::from_real(to::<_, T::Real>(acc[0])).mul_real(m_inv_4pi);
result[1] += T::from_real(to::<_, T::Real>(acc[1])).mul_real(m_inv_4pi);
result[2] += T::from_real(to::<_, T::Real>(acc[2])).mul_real(m_inv_4pi);
result[3] += T::from_real(to::<_, T::Real>(acc[3])).mul_real(m_inv_4pi);
} else if coe::is_same::<T, f64>() {
let acc = pulp::Arch::new().dispatch(Impl::<'_, f64> {
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
charges: charges.coerce(),
});
result[0] += T::from_real(to::<_, T::Real>(acc[0])).mul_real(m_inv_4pi);
result[1] += T::from_real(to::<_, T::Real>(acc[1])).mul_real(m_inv_4pi);
result[2] += T::from_real(to::<_, T::Real>(acc[2])).mul_real(m_inv_4pi);
result[3] += T::from_real(to::<_, T::Real>(acc[3])).mul_real(m_inv_4pi);
} else {
panic!()
}
}
}
}
pub fn assemble_modified_helmholtz_one_target<T: RlstScalar>(
eval_type: GreenKernelEvalType,
target: &[<T as RlstScalar>::Real],
sources: &[<T as RlstScalar>::Real],
omega: T,
result: &mut [T],
) {
assert_eq!(sources.len() % 3, 0);
assert_eq!(target.len(), 3);
let m_inv_4pi = num::cast::<f64, T::Real>(0.25 * f64::FRAC_1_PI()).unwrap();
match eval_type {
GreenKernelEvalType::Value => {
struct Impl<'a, T: RlstScalar<Real = T> + RlstSimd> {
m_inv_4pi: T,
omega: T,
t0: T,
t1: T,
t2: T,
sources: &'a [T],
result: &'a mut [T],
}
impl<T: RlstScalar<Real = T> + RlstSimd> pulp::WithSimd for Impl<'_, T> {
type Output = ();
#[inline(always)]
fn with_simd<S: pulp::Simd>(self, simd: S) -> Self::Output {
use coe::Coerce;
let Self {
m_inv_4pi,
omega,
t0,
t1,
t2,
sources,
result,
} = self;
let (sources, _) = pulp::as_arrays::<3, T>(sources);
let (sources_head, sources_tail) = T::as_simd_slice_from_vec(sources);
let (result_head, result_tail) = T::as_simd_slice_mut(result);
#[allow(clippy::too_many_arguments)]
fn impl_slice<T: RlstScalar<Real = T> + RlstSimd, S: pulp::Simd>(
simd: S,
m_inv_4pi: T,
omega: T,
t0: T,
t1: T,
t2: T,
sources: &[[T::Scalars<S>; 3]],
result: &mut [T::Scalars<S>],
) {
let simd = SimdFor::<T, S>::new(simd);
let m_inv_4pi = simd.splat(m_inv_4pi);
let t0 = simd.splat(t0);
let t1 = simd.splat(t1);
let t2 = simd.splat(t2);
let zero = simd.splat(T::zero());
for (&s, r) in itertools::izip!(sources, result) {
let [s0, s1, s2] = simd.deinterleave(s);
let diff0 = simd.sub(s0, t0);
let diff1 = simd.sub(s1, t1);
let diff2 = simd.sub(s2, t2);
let square_sum = simd.mul_add(
diff0,
diff0,
simd.mul_add(diff1, diff1, simd.mul(diff2, diff2)),
);
let is_zero = simd.cmp_eq(square_sum, zero);
let inv_diff_norm =
simd.select(is_zero, zero, simd.approx_recip_sqrt(square_sum));
let diff_norm = simd.mul(inv_diff_norm, square_sum);
let romega = simd.mul(simd.splat(omega), diff_norm);
*r = simd.mul(
simd.exp(simd.neg(romega)),
simd.mul(inv_diff_norm, m_inv_4pi),
);
}
}
impl_slice::<T, S>(
simd,
m_inv_4pi,
omega,
t0,
t1,
t2,
sources_head,
result_head,
);
impl_slice::<T, pulp::Scalar>(
pulp::Scalar::new(),
m_inv_4pi,
omega,
t0,
t1,
t2,
sources_tail.coerce(),
result_tail.coerce(),
);
}
}
use coe::coerce_static as to;
use coe::Coerce;
if coe::is_same::<T, f32>() {
pulp::Arch::new().dispatch(Impl::<'_, f32> {
m_inv_4pi: to(m_inv_4pi),
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
result: result.coerce(),
});
} else if coe::is_same::<T, f64>() {
pulp::Arch::new().dispatch(Impl::<'_, f64> {
m_inv_4pi: to(m_inv_4pi),
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
result: result.coerce(),
});
} else {
panic!()
}
}
GreenKernelEvalType::ValueDeriv => {
struct Impl<'a, T: RlstScalar<Real = T> + RlstSimd> {
m_inv_4pi: T,
omega: T,
t0: T,
t1: T,
t2: T,
sources: &'a [T],
result: &'a mut [T],
}
impl<T: RlstScalar<Real = T> + RlstSimd> pulp::WithSimd for Impl<'_, T> {
type Output = ();
#[inline(always)]
fn with_simd<S: pulp::Simd>(self, simd: S) -> Self::Output {
use coe::Coerce;
let Self {
m_inv_4pi,
omega,
t0,
t1,
t2,
sources,
result,
} = self;
let (sources, _) = pulp::as_arrays::<3, T>(sources);
let (sources_head, sources_tail) = T::as_simd_slice_from_vec(sources);
let (result, _) = pulp::as_arrays_mut::<4, T>(result);
let (result_head, result_tail) = T::as_simd_slice_from_vec_mut::<_, 4>(result);
#[allow(clippy::too_many_arguments)]
fn impl_slice<T: RlstScalar<Real = T> + RlstSimd, S: pulp::Simd>(
simd: S,
m_inv_4pi: T,
omega: T,
t0: T,
t1: T,
t2: T,
sources: &[[T::Scalars<S>; 3]],
result: &mut [[T::Scalars<S>; 4]],
) {
let simd = SimdFor::<T, S>::new(simd);
let m_inv_4pi = simd.splat(m_inv_4pi);
let t0 = simd.splat(t0);
let t1 = simd.splat(t1);
let t2 = simd.splat(t2);
let zero = simd.splat(T::zero());
for (&s, r) in itertools::izip!(sources, result) {
let [s0, s1, s2] = simd.deinterleave(s);
let diff0 = simd.sub(s0, t0);
let diff1 = simd.sub(s1, t1);
let diff2 = simd.sub(s2, t2);
let square_sum = simd.mul_add(
diff0,
diff0,
simd.mul_add(diff1, diff1, simd.mul(diff2, diff2)),
);
let is_zero = simd.cmp_eq(square_sum, zero);
let inv_diff_norm =
simd.select(is_zero, zero, simd.approx_recip_sqrt(square_sum));
let diff_norm = simd.mul(inv_diff_norm, square_sum);
let romega = simd.mul(simd.splat(omega), diff_norm);
let green = simd.mul(
simd.exp(simd.neg(romega)),
simd.mul(inv_diff_norm, m_inv_4pi),
);
let deriv_first_factor = simd.mul(
simd.mul(green, simd.add(simd.splat(T::one()), romega)),
simd.mul(inv_diff_norm, inv_diff_norm),
);
r[0] = green;
r[1] = simd.mul(diff0, deriv_first_factor);
r[2] = simd.mul(diff1, deriv_first_factor);
r[3] = simd.mul(diff2, deriv_first_factor);
*r = simd.interleave(*r);
}
}
impl_slice::<T, S>(
simd,
m_inv_4pi,
omega,
t0,
t1,
t2,
sources_head,
result_head,
);
impl_slice::<T, pulp::Scalar>(
pulp::Scalar::new(),
m_inv_4pi,
omega,
t0,
t1,
t2,
sources_tail.coerce(),
result_tail.coerce(),
);
}
}
use coe::coerce_static as to;
use coe::Coerce;
if coe::is_same::<T, f32>() {
pulp::Arch::new().dispatch(Impl::<'_, f32> {
m_inv_4pi: to(m_inv_4pi),
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
result: result.coerce(),
});
} else if coe::is_same::<T, f64>() {
pulp::Arch::new().dispatch(Impl::<'_, f64> {
m_inv_4pi: to(m_inv_4pi),
omega: to(omega),
t0: to(target[0]),
t1: to(target[1]),
t2: to(target[2]),
sources: sources.coerce(),
result: result.coerce(),
});
} else {
panic!()
}
}
}
}
fn modified_helmholtz_component_count(eval_type: GreenKernelEvalType) -> usize {
match eval_type {
GreenKernelEvalType::Value => 1,
GreenKernelEvalType::ValueDeriv => 4,
}
}
#[cfg(test)]
mod test {
use crate::laplace_3d::Laplace3dKernel;
use super::*;
use approx::assert_relative_eq;
use itertools::izip;
use paste::paste;
use rand::prelude::*;
use rlst::prelude::*;
use rlst::rlst_dynamic_array1;
macro_rules! impl_modified_helmholtz_tests {
($scalar:ty, $delta:expr, $deriv_eps:expr, $eps:expr) => {
paste! {
#[test]
fn [<test_modified_helmholtz_green_ $scalar>]() {
let delta = $delta;
let deriv_eps = $deriv_eps;
let eps = $eps;
let omega = 1.5;
let mut rng = rand::rngs::StdRng::seed_from_u64(0);
let mut source = rlst_dynamic_array1!($scalar, [3]);
let mut target = rlst_dynamic_array1!($scalar, [3]);
source.fill_from_equally_distributed(&mut rng);
target.fill_from_equally_distributed(&mut rng);
let mut actual_value = [0.0];
let mut actual_deriv = [0.0; 4];
let mut expected_deriv_x = [0.0];
let mut expected_deriv_y = [0.0];
let mut expected_deriv_z = [0.0];
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
source.data(),
target.data(),
actual_value.as_mut_slice(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::ValueDeriv,
source.data(),
target.data(),
actual_deriv.as_mut_slice(),
);
let mut target_x = rlst_dynamic_array1!($scalar, [3]);
let mut target_y = rlst_dynamic_array1!($scalar, [3]);
let mut target_z = rlst_dynamic_array1!($scalar, [3]);
target_y.fill_from(target.r());
target_z.fill_from(target.r());
target_x.fill_from(target.r());
target_x[[0]] += delta;
target_y[[1]] += delta;
target_z[[2]] += delta;
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
source.data(),
target_x.data(),
expected_deriv_x.as_mut_slice(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
source.data(),
target_y.data(),
expected_deriv_y.as_mut_slice(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
source.data(),
target_z.data(),
expected_deriv_z.as_mut_slice(),
);
expected_deriv_x[0] = (expected_deriv_x[0] - actual_value[0]) / delta;
expected_deriv_y[0] = (expected_deriv_y[0] - actual_value[0]) / delta;
expected_deriv_z[0] = (expected_deriv_z[0] - actual_value[0]) / delta;
assert_relative_eq!(actual_value[0], actual_deriv[0], max_relative = eps);
assert_relative_eq!(
actual_deriv[1],
expected_deriv_x[0],
max_relative = deriv_eps
);
assert_relative_eq!(
actual_deriv[2],
expected_deriv_y[0],
max_relative = deriv_eps
);
assert_relative_eq!(
actual_deriv[3],
expected_deriv_z[0],
max_relative = deriv_eps
);
}
#[test]
fn [<test_modified_helmholtz_laplace_compare_ $scalar>]() {
let eps = $eps;
let omega = 0.0;
let mut rng = rand::rngs::StdRng::seed_from_u64(0);
let mut source = rlst_dynamic_array1!($scalar, [3]);
let mut target = rlst_dynamic_array1!($scalar, [3]);
source.fill_from_equally_distributed(&mut rng);
target.fill_from_equally_distributed(&mut rng);
let mut actual_deriv = [0.0; 4];
let mut expected_deriv = [0.0; 4];
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::ValueDeriv,
source.data(),
target.data(),
actual_deriv.as_mut_slice(),
);
Laplace3dKernel::<$scalar>::new().greens_fct(
GreenKernelEvalType::ValueDeriv,
source.data(),
target.data(),
expected_deriv.as_mut_slice(),
);
for (a, e) in izip!(actual_deriv, expected_deriv) {
assert_relative_eq!(a, e, max_relative = eps);
}
}
#[test]
fn [<test_modified_helmholtz_assemble_pairwise_ $scalar>]() {
let eps = $eps;
let omega = 1.5;
let npoints = 53;
let mut rng = rand::rngs::StdRng::seed_from_u64(0);
let mut sources = rlst_dynamic_array2!($scalar, [3, npoints]);
let mut targets = rlst_dynamic_array2!($scalar, [3, npoints]);
sources.fill_from_equally_distributed(&mut rng);
targets.fill_from_equally_distributed(&mut rng);
let mut result_value = rlst_dynamic_array1!($scalar, [npoints]);
let mut result_value_deriv = rlst_dynamic_array2!($scalar, [4, npoints]);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).assemble_pairwise_st(
GreenKernelEvalType::Value,
sources.data(),
targets.data(),
result_value.data_mut(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).assemble_pairwise_st(
GreenKernelEvalType::ValueDeriv,
sources.data(),
targets.data(),
result_value_deriv.data_mut(),
);
for (s, t, res_value, res_deriv) in izip!(
sources.col_iter(),
targets.col_iter(),
result_value.iter(),
result_value_deriv.col_iter()
) {
let mut expected_val = [0.0; 1];
let mut expected_deriv = [0.0; 4];
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
s.data(),
t.data(),
expected_val.as_mut_slice(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::ValueDeriv,
s.data(),
t.data(),
expected_deriv.as_mut_slice(),
);
assert_relative_eq!(res_value, expected_val[0], max_relative = eps);
for (a, &e) in izip!(res_deriv.iter(), expected_val.iter()) {
assert_relative_eq!(a, e, max_relative = eps);
}
}
}
#[test]
fn [<test_modified_helmholtz_evaluate_ $scalar>]() {
let eps = $eps;
let omega = 1.5;
let nsources = 53;
let ntargets = 47;
let mut rng = rand::rngs::StdRng::seed_from_u64(0);
let mut sources = rlst_dynamic_array2!($scalar, [3, nsources]);
let mut targets = rlst_dynamic_array2!($scalar, [3, ntargets]);
let mut charges = rlst_dynamic_array1!($scalar, [nsources]);
sources.fill_from_equally_distributed(&mut rng);
targets.fill_from_equally_distributed(&mut rng);
charges.fill_from_equally_distributed(&mut rng);
let mut expected_value = rlst_dynamic_array1!($scalar, [ntargets]);
let mut expected_value_deriv = rlst_dynamic_array2!($scalar, [4, ntargets]);
for (e_val, target, mut e_val_deriv) in izip!(
expected_value.iter_mut(),
targets.col_iter(),
expected_value_deriv.col_iter_mut()
) {
for (source, charge) in izip!(sources.col_iter(), charges.iter()) {
let mut res_val = [0.0];
let mut res_val_deriv = [0.0; 4];
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
source.data(),
target.data(),
res_val.as_mut_slice(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::ValueDeriv,
source.data(),
target.data(),
res_val_deriv.as_mut_slice(),
);
*e_val += charge * res_val[0];
for (&r, e) in izip!(res_val_deriv.iter(), e_val_deriv.iter_mut()) {
*e += charge * r;
}
}
}
let mut actual_value = rlst_dynamic_array1!($scalar, [ntargets]);
let mut actual_value_deriv = rlst_dynamic_array2!($scalar, [4, ntargets]);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).evaluate_st(
GreenKernelEvalType::Value,
sources.data(),
targets.data(),
charges.data(),
actual_value.data_mut(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).evaluate_st(
GreenKernelEvalType::ValueDeriv,
sources.data(),
targets.data(),
charges.data(),
actual_value_deriv.data_mut(),
);
for (a, e) in izip!(actual_value.iter(), expected_value.iter()) {
assert_relative_eq!(a, e, max_relative = eps);
}
for (a, e) in izip!(actual_value_deriv.iter(), expected_value_deriv.iter()) {
assert_relative_eq!(a, e, max_relative = eps);
}
}
#[test]
fn [<test_modified_helmholtz_assemble_ $scalar>]() {
let eps = $eps;
let omega = 1.5;
let nsources = 53;
let ntargets = 47;
let mut rng = rand::rngs::StdRng::seed_from_u64(0);
let mut sources = rlst_dynamic_array2!($scalar, [3, nsources]);
let mut targets = rlst_dynamic_array2!($scalar, [3, ntargets]);
sources.fill_from_equally_distributed(&mut rng);
targets.fill_from_equally_distributed(&mut rng);
let mut actual_value = rlst_dynamic_array2!($scalar, [nsources, ntargets]);
let mut actual_value_deriv = rlst_dynamic_array2!($scalar, [4 * nsources, ntargets]);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).assemble_st(
GreenKernelEvalType::Value,
sources.data(),
targets.data(),
actual_value.data_mut(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).assemble_st(
GreenKernelEvalType::ValueDeriv,
sources.data(),
targets.data(),
actual_value_deriv.data_mut(),
);
for (target_index, target) in targets.col_iter().enumerate() {
for (source_index, source) in sources.col_iter().enumerate() {
let mut expected_val = [0.0];
let mut expected_val_deriv = [0.0; 4];
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::Value,
source.data(),
target.data(),
expected_val.as_mut_slice(),
);
ModifiedHelmholtz3dKernel::<$scalar>::new(omega).greens_fct(
GreenKernelEvalType::ValueDeriv,
source.data(),
target.data(),
expected_val_deriv.as_mut_slice(),
);
assert_relative_eq!(
expected_val[0],
actual_value[[source_index, target_index]],
max_relative = eps
);
for index in 0..4 {
assert_relative_eq!(
expected_val_deriv[index],
actual_value_deriv[[4 * source_index + index, target_index]],
max_relative = eps
);
}
}
}
}
}
};
}
impl_modified_helmholtz_tests!(f32, 1E-4, 1E-2, 1E-4);
impl_modified_helmholtz_tests!(f64, 1E-8, 1E-4, 1E-11);
}